TV

Với giá trị nào của m thì hàm số sau đây là hàm số bậc nhất

a, y=\(\sqrt{m-3}\times x+\dfrac{2}{3}\)

b, y= \(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\times x+2010\)

với giá trị nào của m thì hàm số ở ý a là hàm số đồng biến. Với gtri nào của m thì hàm số ở ý b là hàm nghịch biến

H9
24 tháng 10 2023 lúc 7:04

a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\) 

Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\) 

Do: \(\sqrt{m-3}\ge0\forall m\ge3\) 

Nên với \(m\ge3\) thì y đồng biến trên R 

b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)

Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\) 

Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)

Vậy với 0 ≤ m < 5 thì y nghịch biến trên R

Bình luận (1)
KL
24 tháng 10 2023 lúc 10:45

a) Để hàm số là hàm số bậc nhất thì:

√(m - 3) > 0

⇔ m - 3 > 0

⇔ m > 3

Vậy với m > 3 thì hàm số đã cho là hàm bậc nhất

b) Để hàm số là hàm bậc nhất thì √m - √5 ≠ 0 và m ≥ 0

⇔ √m ≠ √5

⇔ m ≠ 5

Vậy m ≠ 5 và m ≥ 0 thì hàm số đã cho làm hàm số bậc nhất

*) Để hàm số ở câu a là hàm đồng biến thì m > 3

*) Để hàm số ở câu b là hàm nghịch biến thì √m < √5

⇔ 0 \(\le\) m < 5

Vậy 0 \(\le\) m < 5 thì hàm số ở câu b là hàm số nghịch biến

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
MV
Xem chi tiết
LS
Xem chi tiết
NH
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết