Bài 3: Cấp số cộng

CB

Với giá trị nào của a, ta có thể tìm được các giá trị của x để các số : \(5^{x+1}+5^{1-x}.\frac{a}{2},25^x+25^{-x}\), lập thành một cấp số cộng ?

NT
20 tháng 4 2016 lúc 14:11

Để 3 số hạng đó lập thành cấp số cộng, ta có :

\(\left(5^{1+x}+5^{1-x}\right)+\left(25^x+25^{-x}\right)=2\left(\frac{a}{2}\right)\)

\(\Leftrightarrow a=5\left(5^x+\frac{1}{5^x}\right)+\left(5^{2x}+\frac{1}{5^{2x}}\right)\)

Theo bất đẳng thức côsi, ta có : \(5^x+\frac{1}{5^x}\ge2\sqrt{1}=2,5^{2x}+\frac{1}{5^{2x}}\ge2\)

\(\Rightarrow a\ge5.2+2=12\)

Vậy với : \(a\ge12\), thì 3 số đó lập thành cấp số cộng.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NK
Xem chi tiết
HH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
SL
Xem chi tiết
DD
Xem chi tiết
NA
Xem chi tiết