H24

Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1

Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

MH
17 tháng 9 2023 lúc 11:09

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

Bình luận (0)

Các câu hỏi tương tự
CL
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
QP
Xem chi tiết
NA
Xem chi tiết
DH
Xem chi tiết
HN
Xem chi tiết
HT
Xem chi tiết