a/ \(y=3x+2\)
b/ \(y=-\frac{1}{4}x+1\)
c/ \(y=\frac{1}{6}x+\frac{3}{2}\)
d/ \(y=-32x-48\)
a/ \(y=3x+2\)
b/ \(y=-\frac{1}{4}x+1\)
c/ \(y=\frac{1}{6}x+\frac{3}{2}\)
d/ \(y=-32x-48\)
Cho hàm số y = \(-x^2+3x-2\) có đồ thị (P)
a,Tính đạo hàm của hàm số tại điểm \(y^'\) \(x_0\) thuộc R
b,Viết phương trình tiếp tuyến của (P) tại điểm có hoành độ \(x_0\)=2
c,Viết phương trình tiếp tuyến của (P) tại điểm có tung độ \(y_0\)=0
d,Viết phương trình tiếp tuyến của (P), biết tiếp tuyến vuông góc với đường thắng \(y^'=x+3\)
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra :
a) \(y=x^2+x\) tại \(x_0=1\)
b) \(y=\dfrac{1}{x}\) tại \(x_0=2\)
c) \(y=\dfrac{x+1}{x-1}\) tại \(x_0=0\)
1. Cho \(f(x)=\begin{cases} {xsinx \ khi \ x\neq0 \\ 0 \ khi \ x=0}\end{cases}\)
a) Xét sự liên tục của hàm số tại \(x_0 = 0\)
b) Xét xem tại \(x_0=0\) hàm số có đạo hàm không?
2.
Cho \(f(x)=\dfrac {|x|}{x+3}\)
a) Xét sự liên tục của hàm số tại \(x_0 = 0\)
b) Xét xem tại \(x_0=0\) hàm số có đạo hàm không?
Giúp em 2 bài này dùng định nghĩa đạo hàm nhé! Em cảm ơn ạ!
cho hàm số y = \(^{2x^2-1}\)
tính y'(x)
viết PTTT với đồ thị hàm số tại điểm có hoành độ \(_{x_0=1}\)
Tìm số gia của hàm số \(f\left(x\right)=x^3\) biết rằng :
a) \(x_0=1;\Delta=1\)
b) \(x_0=1;\Delta x=-0,1\)
Viết phương trình tiếp tuyến của đồ thị của các hàm số :
a) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ \(x=0\)
b) \(y=x^3-3x^2+2\) tại điểm \(\left(-1;-2\right)\)
c) \(y=\sqrt{2x+1}\) , biết hệ số góc của tiếp tuyến là \(\dfrac{1}{3}\)
d) \(y=x^4-2x^2\) tại điểm có hoành độ \(x=-2\)
e) \(y=\dfrac{2x+1}{x-2}\) biết hệ số góc của tiếp tuyến bằng \(-5\)
Cho hàm số \(y=f\left(x\right)=\dfrac{x-2}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt 2 đường thẳng d1:x=-1 và d2:y=1 lần lượt tại A, B sao cho bán kính đường tròn nội tiếp tam giác IAB là lớn nhất.
Cho \(f(x)=\begin{cases} {\sqrt{5-x^2} \ khi \ -\sqrt{5} \leq x\leq2 \\ x^2+bx+c \ khi \ x>2} \end{cases}\)
Tìm b, c để hàm số có đạo hàm tại \(x_0=2\)
Cho hàm số \(y=x-\dfrac{1}{x}\) . Tìm điểm M thuộc đồ thị hàm số sao cho khoảng cách từ gốc tọa độ đến tiếp tuyến tại M bằng \(\dfrac{1}{2}\)