Ôn tập Đường tròn

LM

Vẽ hình thôi ạ

Cho đường tròn tâm O bán kính R và một điểm A nằm ngòi đường tròn . qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . tia Ax nằm giữa A,B và AO cắt đường tròn (O;R) tại hai điểm C và D( C nằm giữa A và D) . gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H . a,Tính OH. OA theo R .b, Chứng minh bốn điểm A,B,M,O cùng thuộc một đường tròn . c,Gọi E là giao của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn

NT
7 tháng 12 2022 lúc 23:48

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
MN
Xem chi tiết
SG
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết