Ôn tập Đường tròn

SG

Từ một điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm).

1) Chứng minh rằng: 4 điểm A, B, C, O cùng nằm trên một đường tròn. 2) Chứng minh rằng: AO vuông góc BC tại trung điểm H của BC. 3) Chứng minh rằng: \(\dfrac{OB^2}{AC^2}=\dfrac{HO}{HA}\) 4) Từ điểm M nằm trên cung lớn BC, kẽ tiếp tuyến thứ 3 với đường tròn tâm O, tiếp tuyến này cắt AB, AC theo thứ tự tại D và E. Biết AD = 7cm, AE = 25cm, DE= 24cm. Tính độ dài các đoạn thẳng AB và BC.


Các câu hỏi tương tự
H24
Xem chi tiết
LC
Xem chi tiết
BN
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NQ
Xem chi tiết