NA

từ một điểm A ở ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC ( B, C là tiếp điểm ) và cắt tuyến ADE đến đường tròn ( tia AE nằm trong góc OAB và điểm D nằm giữa A và E )CM: tứ giác OHDE nội tiếp đường tròn và HB là tia phân giác của góc DHE

 

NT
18 tháng 2 2023 lúc 11:10

Kẻ tiếp tuyến tại E,D cắt nhau tại T

Xét (O) có

AB,AC là tiếp tuyên

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC

=>AH*AO=AB^2

Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng đạng với ΔAEB

=>AB/AE=AD/AB

=>AB^2=AE*AD=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng vơi ΔAOE

=>góc ADH=góc AOE

=>góc DHO+góc DEO=180 độ

=>OHDE là tứ giác nội tiếp(1)

Xét tứ giác OETD có

góc OET+góc OTD=180 độ

=>OETD là tứ giác nội tiếp(2)

Từ (1), (2) suy ra O,E,T,D,H cùng thuộc 1 đường tròn

=>góc EHT=1/2*sđ cung ET; góc THD=1/2*sđ cung TD

ΔOET=ΔODT

=>ET=DT

=>góc EHT=góc DHT

=>HB là phân giác của góc DHE

 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TP
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
TT
Xem chi tiết