H24

Qua điểm A nằm bên ngoài đường tròn 0, kẻ các tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm O (D, E thuộc đường tròn (O) và D nằm giữa AE). Vẽ OI vuông góc AE tại I a) cm: tứ giác OIBA nội tiếp b) cm: AD. AE = AC² c) Vẽ BC cắt OA tại K. cm: góc AKD = góc AEO cảm ơn mn

NT
29 tháng 5 2022 lúc 0:36

a: Xét tứ giác OIBA có \(\widehat{OIA}=\widehat{OBA}=90^0\)

nên OIBA là tứ giác nội tiếp

b: Xét ΔACD và ΔAEC có 

\(\widehat{ACD}=\widehat{AEC}\)

\(\widehat{DAC}\) chung

Do đó: ΔACD\(\sim\)ΔAEC
SUy ra: AC/AE=AD/AC
hay \(AC^2=AE\cdot AD\left(1\right)\)

c: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
mà OB=OC

nên OA là đường trung trực của BC

Xét ΔOCA vuông tại C có CK là đường cao

nên \(AK\cdot AO=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AO=AD\cdot AE\)

hay AK/AE=AD/AO

Xét ΔAKD và ΔAEO có

AK/AE=AD/AO

góc KAD chung

DO đó: ΔAKD\(\sim\)ΔAEO

Suy ra: \(\widehat{AKD}=\widehat{AEO}\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
LA
Xem chi tiết
NA
Xem chi tiết
PL
Xem chi tiết
TP
Xem chi tiết
NK
Xem chi tiết
LH
Xem chi tiết
PH
Xem chi tiết
SY
Xem chi tiết