Bài 4. ÔN TẬP CHƯƠNG III

PT

Trong mặt phẳng toạ độ Oxy cho hai đường thẳng d1 : x + y − 1 = 0; d2 : 3x − y + 5 = 0 cắt
nhau tại A. Viết phương trình đường thẳng ∆ đi qua điểm M(2; 2) và cắt d1, d2 lần lượt tại B, C thoả
mãn AB = BC.

NL
15 tháng 4 2020 lúc 0:38

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+y-1=0\\3x-y+5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;2\right)\)

Gọi \(\alpha\) là góc giữa d1 và d2 \(\Rightarrow cos\alpha=\frac{\left|3-1\right|}{\sqrt{2}.\sqrt{10}}=\frac{\sqrt{5}}{5}\)

Do \(AB=BC\Rightarrow\Delta ABC\) cân tại B

Gọi \(\beta\) là góc giữa \(\Delta\)\(d_1\) \(\Rightarrow\alpha=\beta\)

Giả sử \(\Delta\) nhận \(\left(a;b\right)\) là vtpt

\(\Rightarrow\frac{\left|a+b\right|}{\sqrt{2}\sqrt{a^2+b^2}}=\frac{\sqrt{5}}{5}\)

\(\Leftrightarrow5\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+10ab+3b^2=0\Rightarrow\left[{}\begin{matrix}3a=-b\\a=-3b\end{matrix}\right.\)

\(\Rightarrow\Delta\) có 2 vtpt là \(\left(1;-3\right);\left(3;-1\right)\)

Có 2 pt đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}1\left(x-2\right)-3\left(y-2\right)=0\\3\left(x-2\right)-1\left(y-2\right)=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
HB
Xem chi tiết
NQ
Xem chi tiết
HB
Xem chi tiết
PK
Xem chi tiết
TA
Xem chi tiết
TD
Xem chi tiết
TA
Xem chi tiết
DM
Xem chi tiết