H24

Trong mặt phẳng Oxy cho đường thẳng Δ:3x-4y+4=0 và (C):(x-1)2+(y+2)2=9 có tâm là điểm I. Chọn đúng, sai

a/ Đt Δ đi qua gốc tọa độ

b/Đt Δ tiếp xúc với (C)

c/Gọi M là giao điểm của Δ và trục tung, khi đó độ dài đoạn thẳng MI =\(\sqrt{10}\)

 

NT

a: S

b: Đ

c: Đ

Bình luận (1)
NL
6 tháng 3 lúc 13:41

a.

Thay gốc tọa độ \(O\left(0,0\right)\) vào pt \(\Delta\) ta được:

\(3.0-4.0+4=0\Leftrightarrow4=0\) (ko thỏa mãn)

Vậy O không thuộc \(\Delta\) hay \(\Delta\) ko đi qua gốc tọa độ

b.

Đường tròn (C) có tâm \(I\left(1;-2\right)\) và bán kính \(R=3\)

Khoảng cách từ I đến \(\Delta\) là:

\(d\left(I;\Delta\right)=\dfrac{\left|3.1-4.\left(-2\right)+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{15}{5}=3=R\)

\(\Rightarrow\Delta\) tiếp xúc với (C)

c.

Do M là giao điểm \(\Delta\) với Oy \(\Rightarrow x_M=0\)

\(\Rightarrow3.0-4y_M+4=0\Rightarrow y_M=1\)

\(\Rightarrow M\left(0;1\right)\)

\(\Rightarrow\overrightarrow{MI}=\left(1;-3\right)\Rightarrow MI=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
BU
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
LN
Xem chi tiết