Bài 3.3: Vị trí tương đối giữa hai đường thẳng

HT

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left(4;2;2\right);B\left(0;0;7\right)\), đường thẳng \(d:\frac{x-3}{-2}=\frac{y-6}{2}=\frac{z-1}{1}\)

Chứng minh rằng hai đường thẳng d và AB cùng thuộc một mặt phẳng. Tìm điểm C thuộc đường thẳng d sao cho tam giác ABC cân đỉnh A

DQ
11 tháng 4 2016 lúc 17:00

Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}\left(-2;2;1\right)\) và đi qua \(M\left(3;6;1\right)\)

Đường thẳng AB có vectơ chỉ phương \(\overrightarrow{AB}\left(-4;-2;5\right)\) và đi qua \(\overrightarrow{AM}\left(-1;4;-1\right)\)

Ta có \(\left[\overrightarrow{u},\overrightarrow{AB}\right]=\left(12;6;12\right)\Rightarrow\left[\overrightarrow{u},\overrightarrow{AB}\right].\overrightarrow{AM}=-12+24-12=0\)

Vậy ta có AB và d đồng phẳng.

\(C\in d\Rightarrow C\left(3-2t;6+2t;1+t\right)\)

Tam giác ABC cân tại A \(\Leftrightarrow AB=AC\)

                                    \(\Leftrightarrow\left(1+2t\right)^2+\left(4+2t\right)^2+\left(1-t\right)^2=45\)

                                    \(\Leftrightarrow9t^2-18t-27=0\)

                                   \(\Leftrightarrow t=1\) hoặc \(t=-3\)

Vậy \(C\left(1;8;2\right)\) hoặc \(C\left(9;0;-2\right)\)

 
Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
BL
Xem chi tiết
AK
Xem chi tiết
TA
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
DC
Xem chi tiết