Bài 3.3: Vị trí tương đối giữa hai đường thẳng

TA

help!!!

Cho hình chóp S.ABCD có đáy là hình thoi tâm O, AB=BD=a. Trên cạnh AB lấy điểm M sao cho BM =2AM. Biết hai mp (SAC) và (SMD) cùng vuông góc với mặt phẳng (ABCD) và mặt bên (SAB) tạo với đáy một góc 600 .Tính thể tích S.ABCD và cosin của góc giữa OM và SA

 

LH
30 tháng 7 2016 lúc 14:38

Gọi H là điểm gia của AC và MD.

Ta có : (SAC) giao (SMD) = SH, cùng vuông góc vuối (ABCD) 

=> SH là đường cao.

Kẻ HK vuông góc với AB, có AB vuông góc với (SKH) => góc tạo bởi (ABCD) và (SAB) 

=> SKH = 600

Có tam giác ABD đều tại A => AO = \(\frac{a\sqrt{3}}{8}\) 

=> tan (SKH) = SH/SK => SH = \(\frac{3a}{8}\Rightarrow V=\frac{\sqrt{3}a^3}{16}\)

=> cos OM và OA là \(\frac{a\sqrt{13}}{4}\)

Bình luận (2)

Các câu hỏi tương tự
TN
Xem chi tiết
AK
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
DN
Xem chi tiết
BL
Xem chi tiết
DC
Xem chi tiết