PB

Trong không gian Oxyz, cho điểm M(1;2;3). Biết rằng có tất cả n mặt phẳng dạng P i : x + a i y + b i z + c i = 0 i = 1 , 2 . . . n  đi qua M và cắt các trục tọa độ x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C khác gốc tọa độ O sao cho O.ABC là hình chóp đều. Giá trị của a 1 + a 2 + . . . + a n  bằng

A. 1

B. 3

C. -3

D. -1

CT
18 tháng 2 2017 lúc 5:05

 

Gọi A(a;0;0), B(0;b;0), C(0;0;c)  và 

Vì O.ABC là hình chóp đều nên

⇔ O A = O B = O C > 0

Do đó với  O A = O B = O C ⇔ a = b = c

Vậy ta có hệ điều kiện: 

Vậy ta có ba mặt phẳng thoả mãn là

x+y=z-6=0; x-y-z+4=0; x-y+z-2=0

Vì vậy 

Chọn đáp án D.

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết