Cho tam giác ABC vuông tại A, có AB= 8cm, đường cao AH. Tia phân giác của góc C cắt AB tại D.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, BD, AD
c) Từ B vẽ BK vuông góc với CD tại K, BK cắt AH kéo dài tại E, trên CD lấy điểm S sao cho BA=BS. Chứng minh BF vuông góc với EF
Bài 2 (4,5 điểm) Cho tam giác ABC nhọn, AD là đường phân giác. Trên tia đối của tia DA
lấy điểm E sao cho góc AEB = góc ACB.
a) Biết AB = 4cm, AC = 6cm, BC = 8cm. Tính BD, CD.
b) Chứng minh: tam giác DEB đồng dạng với tam giác ADC và tam giác ABE đồng
dạng với tam giác ADC.
c) Chứng minh: AC. AB = AD. AE và AD' = AB.AC- DB.DC.
d) Chứng minh ABE+ACE = 180°.
Tứ giác ABCD có AB = 4cm, BC = 20cm, CD = 25cm, DA = 8cm, đường chéo BD = 10cm
a) Nêu cách vẽ tứ giác ABCD có kích thước đã cho ở trên ?
b) Các tam giác ABC và BDC có đồng dạng với nhau không ? Vì sao ?
c) Chứng minh rằng AB // CD
 = 90° , AB = 12cm , AC = 16cm Kẽ đường cao AH ( H € BC ) Tia phân giác góc A cắt BC tại D A) Chứng minh tam giác HBA ~ tam giác ABC và AB²= BH . BC B) Tính độ dài BC , BD và CD C) Tính tỉ số điện tích tam giác ABD và tam giác ACD D) Từ D kẽ DE vuông với AC ( E € AC ) Tính độ dài đoạn DE
cho tam giác ABC có AB=6cm , AC =7,5cm , BC =9cm . Trên tia đối của tiaAB lấy điểm D sao cho AD =AC . a, chứng minh tam giác ABC đồng dạng với tam giác CBD . b , tính CD . c, chúng minh góc BAC = 2 góc ACB
 = 90° , AB = 12cm , AC = 16cm Kẽ đường cao AH ( H € BC ) Tia phân giác góc A cắt BC tại D A) Chứng minh tam giác HBA đồng dạng tam giác ABC và AB²= BH . BC B) Tính độ dài BC , BD và CD C) Tính tỉ số điện tích tam giác ABD và tam giác ACD D) Từ D kẽ DE vuông với AC ( E € AC ) Tính độ dài đoạn DE
∆ABC vuông tại A: AB=6cm,AC=8cm. a, Tính BC b, Vẽ đường cao AH của ∆ABC Chứng minh: ∆HAB∽∆HCA c, Trên BC lấy điểm E sao cho CE=4cm. Chứng minh: BE²= BH.BC
Cho tam giác ABC, M là trung điểm của BC. Trên cạnh AB lấy hai điểm D và E sao cho AD = DE = EB, I = AM Ç CD. Chứng minh rằng: a) ME // CD
b) I là trung điểm của AM
c) CI = 3 DI
Cho tam giác ABC cân tại A có BC = 2a, M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạch AB, AC sao cho \(\widehat{DME}\) = \(\widehat{B}\)
a) Chứng minh BC. CE không đổi.
b) Chứng minh DM là tia phân giác của góc BDE.
c) Tính chu vi tam giác AED nếu tam giác ABC đều.