Ôn tập: Tam giác đồng dạng

H8

 = 90° , AB = 12cm , AC = 16cm Kẽ đường cao AH ( H € BC ) Tia phân giác góc A cắt BC tại D A) Chứng minh tam giác HBA ~ tam giác ABC và AB²= BH . BC B) Tính độ dài BC , BD và CD C) Tính tỉ số điện tích tam giác ABD và tam giác ACD D) Từ D kẽ DE vuông với AC ( E € AC ) Tính độ dài đoạn DE

NT
27 tháng 1 2024 lúc 13:22

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó;ΔHBA~ΔABC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=3\cdot\dfrac{20}{7}=\dfrac{60}{7}\left(cm\right);CD=4\cdot\dfrac{20}{7}=\dfrac{80}{7}\left(cm\right)\)

c: Ta có: \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

=>\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

d: Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có DE//AB

nên \(\dfrac{CD}{CB}=\dfrac{DE}{AB}\)

=>\(\dfrac{DE}{12}=\dfrac{80}{7}:20=\dfrac{4}{7}\)

=>\(DE=12\cdot\dfrac{4}{7}=\dfrac{48}{7}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H8
Xem chi tiết
BH
Xem chi tiết
NM
Xem chi tiết
LH
Xem chi tiết
LK
Xem chi tiết
KL
Xem chi tiết
TQ
Xem chi tiết
CC
Xem chi tiết
PN
Xem chi tiết