Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

LE

Tính: \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

NT
23 tháng 8 2020 lúc 12:28

Ta có: \(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{1+\sqrt{3+\sqrt{12+2\cdot2\sqrt{3}\cdot1+1}}}+\sqrt{1-\sqrt{3-\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)

\(=\sqrt{1+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}}+\sqrt{1-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(=\sqrt{1+\sqrt{3+\left|2\sqrt{3}+1\right|}}+\sqrt{1-\sqrt{3-\left|2\sqrt{3}-1\right|}}\)

\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)(Vì \(2\sqrt{3}>1>0\))

\(=\sqrt{1+\sqrt{4+2\sqrt{3}}}+\sqrt{1-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{1+\sqrt{3+2\cdot\sqrt{3}\cdot1+1}}+\sqrt{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{1+\sqrt{\left(\sqrt{3}+1\right)^2}}+\sqrt{1-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{1+\left|\sqrt{3}+1\right|}+\sqrt{1-\left|\sqrt{3}-1\right|}\)

\(=\sqrt{1+\sqrt{3}+1}+\sqrt{1-\left(\sqrt{3}-1\right)}\)(Vì \(\sqrt{3}>1>0\))

\(=\sqrt{2+\sqrt{3}}+\sqrt{1-\sqrt{3}+1}\)

\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}\)(Vì \(\sqrt{3}>1>0\))

\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
AD
Xem chi tiết
VL
Xem chi tiết
ML
Xem chi tiết
LT
Xem chi tiết
TP
Xem chi tiết
NL
Xem chi tiết
LA
Xem chi tiết
HT
Xem chi tiết