Bài 4: Vi phân

ND

Tính phương trình sai phân

y(n+2) +2y(n+1) +4y(n)=3n-4

Tính phương trình vi phân

(y2-2)dx=(y+x2y)dy

NL
11 tháng 6 2020 lúc 17:35

1.

\(y_{n+2}+2y_{n+1}+4y_n=3n-4\)

Xét phương trình thuần nhất: \(y_{n+2}+2y_{n+1}+4y_n=0\)

Pt đặc trưng: \(\lambda^2+2\lambda+4=0\Rightarrow\lambda_{1,2}=2\left(cos\frac{2\pi}{3}\pm sin\frac{2\pi}{3}\right)\)

\(\Rightarrow\) Nghiệm của pt thuần nhất có dạng:

\(\overline{y_n}=2^n\left(c_1.cos\frac{2n\pi}{3}+c_2.sin\frac{2n\pi}{3}\right)\)

Tìm nghiệm riêng có dạng: \(y_n^0=an+b\)

Thay vào pt:

\(a\left(n+2\right)+b+2\left[a\left(n+1\right)+b\right]+4\left[an+b\right]=3n-4\)

\(\Leftrightarrow7an+4a+7b=3n-4\)

\(\Rightarrow\left\{{}\begin{matrix}7a=3\\4a+7b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{7}\\b=-\frac{40}{49}\end{matrix}\right.\)

Nghiệm riêng có dạng: \(y_n^0=\frac{3}{7}n-\frac{40}{49}\)

Nghiệm tổng quát: \(y_n=2^n\left(c_1.cos\frac{2n\pi}{3}+c_2.sin\frac{2n\pi}{3}\right)+\frac{3}{7}n-\frac{40}{49}\)

2.

\(\left(y^2-2\right)dx=y\left(x^2+1\right)dy\)

\(\Leftrightarrow\frac{y}{y^2-2}dy-\frac{1}{x^2+1}dx=0\)

Lấy tích phân 2 vế:

\(\Rightarrow\int\frac{y}{y^2-2}dy-\int\frac{1}{x^2+1}dx=C\)

\(\Rightarrow\frac{1}{2}ln\left|y^2-2\right|-arctanx=C\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
SK
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết