Bài 1: Căn bậc hai

TB

Tính giá trị của biểu thức P= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-y\right)\left(4-x\right)}-\sqrt{xyz}\)

Trong đó x,y,z là các số thực dương thỏa mãn: x+y+z= 4 - \(\sqrt{xyz}\)

UK
21 tháng 7 2017 lúc 16:29

\(x+y+z=4-\sqrt{xyz}\)

\(\Leftrightarrow x+y+z+\sqrt{xyz}=4\)

\(\Leftrightarrow4\left(x+y+z\right)+4\sqrt{xyz}=16\)

Ta có: \(x\left(4-y\right)\left(4-z\right)\)

\(=x\left[16-4\left(y+z\right)+yz\right]\)

\(=x\left[4\left(x+y+z\right)+4\sqrt{xyz}-4\left(y+z\right)+yz\right]\)

\(=x\left(4x+4\sqrt{xyz}+yz\right)\)

\(=x\left(2\sqrt{x}+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)\)

\(=2x+\sqrt{xyz}\)

Tương tự: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)

\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Cộng vế theo vế các đẳng thức vừa chứng minh ta được:

\(P=2\left(x+y+z\right)+3\sqrt{xyz}=2\left(4-\sqrt{xyz}\right)+3\sqrt{xyz}=8+\sqrt{xyz}\)

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
PP
Xem chi tiết
VC
Xem chi tiết
TB
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
AD
Xem chi tiết