Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

H24

Tính giá trị biểu thức (Nhân thêm số căn vào biểu thức để làm xuất hiện hằng đẳng thức \(\left(a\pm\sqrt{b}\right)^2\) hoặc \(\left(\sqrt{a}\pm\sqrt{b}\right)^2\) rồi phá căn)

a. \(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

b. \(\dfrac{\sqrt{3}+1}{2}.\sqrt{8-2\sqrt{3}}\)

AT
2 tháng 7 2021 lúc 9:38

a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

Bình luận (0)
NT
2 tháng 7 2021 lúc 9:33

a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

=2

 

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NV
Xem chi tiết