a/ \(=\left|\sqrt{3}-2\right|=2-\sqrt{3}\)
b/ \(=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
a/ \(=\left|\sqrt{3}-2\right|=2-\sqrt{3}\)
b/ \(=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
a. \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
b. \(3\left(2+\sqrt{x}\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
c. \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
d. \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
a, \(A=\left(\sqrt{2}+1\right)[\left(\sqrt{2}\right)^2+1][(\sqrt{2})^4+1][\left(\sqrt{2}\right)^8+1][1\left(\sqrt{2}\right)^{16}+1]\)
b, \(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+1\sqrt{2020}}\)
c,\(C=^3\sqrt[]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
rÚT GỌN: G=\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{6}}-\sqrt{2}\)
chững minh : a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt[]{6}=9\)
b)\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
giúp mk với tối mai mk nạp rồi
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
BT: Tính
a, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
b,\(\left(3-\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\cdot\sqrt{3-\sqrt{5}}\)
c,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
1. làm tính nhân :
a)\(\left(\sqrt{12}-3\sqrt{75}\right).\sqrt{3}\)
b) \(\left(\sqrt{18}-4\sqrt{72}\right).2\sqrt{2}\)
c) \(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)
d) \(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
2) thực hien phep tinh :
a) \(\left(\sqrt{48}-\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
b) \(\left(\sqrt{20}-3\sqrt{45}+6\sqrt{180}\right):\sqrt{5}\)
c) \(\left(2\sqrt{20}-3\sqrt{45}+4\sqrt{80}\right):\sqrt{5}\)
d) \(\left(3\sqrt{24}+4\sqrt{54}-5\sqrt{96}\right):\sqrt{6}\)
e)\(\left(\sqrt{x^2y}-\sqrt{xy^2}\right):\sqrt{xy}\)
f) \(\left(\sqrt{a^3b}+\sqrt{ab^3}-ab\right):\sqrt{ab}\)
g) \(\left(3\sqrt{x^2y}-4\sqrt{xy^2}+5xy\right):\sqrt{xy}\)
h) \(\left(\sqrt{a^3b}+\sqrt{ab^3-3\sqrt{ab}}\right):\sqrt{ab}\)
Tính:
a) \(A=\sqrt{8-2\sqrt{15}}\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
b) \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
c) \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}+}\sqrt{3}\right):\sqrt{3}\)
d) \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
\(B=\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
rút gọn biểu thức
Help me!