Bài 4: Liên hệ giữa phép chia và phép khai phương

NT

tính

a.\(\sqrt{\dfrac{289}{225}}\)

b.\(\sqrt{2\dfrac{14}{25}}\)

c.\(\sqrt{\dfrac{0,25}{9}}\)

d.\(\sqrt{\dfrac{8,1}{1,6}}\)

DH
21 tháng 6 2017 lúc 19:24

a, \(\sqrt{\dfrac{289}{225}}=\sqrt{\dfrac{17^2}{15^2}}=\dfrac{17}{15}\)

b, \(\sqrt{2\dfrac{14}{25}}=\sqrt{\dfrac{64}{25}}=\sqrt{\dfrac{8^2}{5^2}}=\dfrac{8}{5}\)

c, \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{0,5^2}{3^2}}=\dfrac{0,5}{3}\)

d, \(\sqrt{\dfrac{8,1}{1,6}}=\sqrt{\dfrac{0,1}{0,1}.\dfrac{81}{16}}=\sqrt{1.\dfrac{81}{16}}=\dfrac{9}{4}\)

Chúc bạn học tốt!!!

Bình luận (0)
H24
21 tháng 6 2017 lúc 19:30

a) \(\sqrt{\dfrac{289}{225}}\)

\(=\dfrac{\sqrt{289}}{\sqrt{225}}\)

\(=\dfrac{\sqrt{17^2}}{\sqrt{15^2}}\)

\(=\dfrac{17}{15}\)

b) \(\sqrt{2\dfrac{14}{15}}\)

\(=\sqrt{\dfrac{44}{15}}\)

\(=\dfrac{\sqrt{44}}{\sqrt{15}}\)

\(=\dfrac{2\sqrt{11}}{\sqrt{15}}\)

\(=\dfrac{2\sqrt{165}}{15}\)

c) \(\sqrt{\dfrac{0,25}{9}}\)

\(=\sqrt{\dfrac{1}{\dfrac{4}{9}}}\)

\(=\dfrac{\dfrac{1}{2}}{3}\)

\(=\dfrac{1}{6}\)

d) \(\sqrt{\dfrac{8,1}{1,6}}\)

\(=\sqrt{5,0625}\)

\(=\sqrt{\dfrac{81}{16}}\)

\(=\dfrac{9}{4}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết
TL
Xem chi tiết
TK
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết