Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

H24

Tính

a)\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

b)\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{3}-1}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)

c)\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

NT
10 tháng 8 2020 lúc 10:13

a) Ta có: \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

\(=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{5}-\frac{\sqrt{5}}{2}\)

\(=\frac{2\sqrt{5}-\sqrt{5}}{2}=\frac{\sqrt{5}}{2}\)

b) Ta có: \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{3}-1}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{\left(2\sqrt{8}-\sqrt{12}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(\sqrt{5}+\sqrt{27}\right)\left(\sqrt{30}+\sqrt{2}\right)}{30-2}\)

\(=\frac{4\sqrt{6}+4\sqrt{2}-6-2\sqrt{3}}{2}-\frac{5\sqrt{6}+\sqrt{10}+9\sqrt{10}+3\sqrt{6}}{28}\)

\(=\frac{4\sqrt{2}\left(\sqrt{3}+1\right)-2\sqrt{3}\left(\sqrt{3}+1\right)}{2}-\frac{10\sqrt{10}+8\sqrt{6}}{28}\)

\(=\frac{2\cdot\left(\sqrt{3}+1\right)\left(2\sqrt{2}-\sqrt{3}\right)}{2}-\frac{\sqrt{1000}+\sqrt{384}}{28}\)

\(=2\sqrt{6}-3+2\sqrt{2}-\sqrt{3}-\frac{\sqrt{2}\cdot\left(5\sqrt{5}+4\sqrt{3}\right)}{14}\)

\(=\frac{28\sqrt{6}-42+28\sqrt{2}-14\sqrt{3}-10\sqrt{10}-8\sqrt{6}}{14}\)

\(=\frac{20\sqrt{6}-42+28\sqrt{2}-14\sqrt{3}-10\sqrt{10}}{14}\)

c) Ta có: \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)

\(=\frac{2\sqrt{3}+2-2\sqrt{3}+2}{2}\)

\(=\frac{4}{2}=2\)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
PT
Xem chi tiết
HD
Xem chi tiết
QH
Xem chi tiết
BR
Xem chi tiết
ML
Xem chi tiết
PD
Xem chi tiết
BA
Xem chi tiết
PD
Xem chi tiết