Sửa đề: \(x^2+10y^2-2xy+6y+1=0\)
\(\Leftrightarrow x^2-2xy+y^2+9y^2+6y+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(3y+1\right)^2=0\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{3}\)
Đúng 2
Bình luận (0)
\(x^2+10y^2-2xy+6x+1=0\Leftrightarrow\left(x-y\right)^2+\left(3y+1\right)^2=0\)
Vì \(\left(x-y\right)^2\ge0,\left(3y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\3y+1=0\end{matrix}\right.\)\(\Rightarrow x=y=\dfrac{-1}{3}\)
Đúng 1
Bình luận (0)