LV

Tìm \(x\in Z\), biết:

                   \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\) 

NH
29 tháng 3 2016 lúc 20:36

1/3.4+1/4.5+1/5.6+.....+1/x(x+1)=3/10

1/3-1/4+1/4-1/5+1/5-........-1/x+1/x-1/x+1=3/10

=>1/3-1/x+1=3/10

   1/x+1=3/10-1/3=1/30

=>x+1=30

   x=30-1

   x=29

Bình luận (0)
BT
29 tháng 3 2016 lúc 20:37

Ta có :

\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{3}{10}\)

=>\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3}{10}\)

=>\(\frac{1}{3}-\frac{1}{x+1}=\frac{3}{10}\)

=>\(\frac{1}{x+1}=\frac{1}{3}-\frac{3}{10}\)

=>\(\frac{1}{x+1}=\frac{1}{30}\)

=>\(x+1=30\)

=>\(x=30-1\)

=>\(x=29\)

Vậy \(x=29\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NQ
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
SG
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết