Thằng CTV nào xóa vẫn còn dấu vết vậy ?
\(\Leftrightarrow\frac{1}{x+2}-2\le0\Leftrightarrow\frac{-2x-3}{x+2}\le0\Leftrightarrow\frac{2x+3}{x+2}\ge0\) (1)
TH1: \(\left\{{}\begin{matrix}2x+3\ge0\\x+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x>-2\end{matrix}\right.\) \(\Rightarrow x\ge-\frac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2x+3\le0\\x+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le-\frac{3}{2}\\x< -2\end{matrix}\right.\) \(\Rightarrow x< -2\)
Vậy \(\left[{}\begin{matrix}x\ge-\frac{3}{2}\\x< -2\end{matrix}\right.\)
Mình nghĩ chắc cô bạn nhầm gì rồi! Tử và mẫu cùng âm cũng bằng với tử và mẫu cùng dương mà. Có khác đâu
\(\frac{1}{x+2}\le2\) (ĐKXĐ :x\(\ne-2\))
\(\Leftrightarrow\frac{1}{x+2}-2\le0\)
\(\Leftrightarrow\frac{1-x-2}{x+2}\le0\)
\(\Leftrightarrow\frac{-x-1}{x+2}\le0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-x-1\le0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}-x-1\ge0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\le-2\end{matrix}\right.\end{matrix}\right.\)
\(\frac{1}{x+2}-2\le0\Leftrightarrow\frac{-2x-3}{x+2}\le0\Leftrightarrow\frac{2x+3}{x+2}\ge0\)
TH1: \(\left\{{}\begin{matrix}2x+3\ge0\\x+2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x>-2\end{matrix}\right.\) \(\Rightarrow x\ge-\frac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2x+3\le0\\x+2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le-\frac{3}{2}\\x< -2\end{matrix}\right.\) \(\Rightarrow x< -2\)
Vậy \(\left[{}\begin{matrix}x\ge-\frac{3}{2}\\x< -2\end{matrix}\right.\)