\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
`x^4-2x^3+10x^2-20x=0`
`<=>x^3(x-2)+10x(x-2)=0`
`<=>(x^3+10x)(x-2)=0`
`<=>x(x^2+10)(x-2)=0`
`<=>`$\left[\begin{matrix} x=0\\ x^2+10=0\\x-2=0\end{matrix}\right.$
`<=>`$\left[\begin{matrix} x=0\\ x^2=-10 \ \rm(loại) \\x=2\end{matrix}\right.$
Vậy `S={0;2}`
Ta có: \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)