Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
Tìm \(x\) biết :
a) \(\sqrt{x-5}=3\)
b) \(\sqrt{x-10}=-2\)
c) \(\sqrt{2x-1}=\sqrt{5}\)
d) \(\sqrt{4-5x}=12\)
bài 1:tìm x biết
a) \(\sqrt{2x-1}=5\) c) \(\sqrt{x^2-6x+9}=5\)
b) \(\sqrt{4\left(x-1\right)}=12\)
bài 2: tìm x biết căn thức có nghĩa
a) \(\sqrt{2x-\dfrac{1}{3}}\) b) \(\sqrt{5-3x}\)
c) \(\sqrt{\dfrac{x+1}{5-x}}\) d) \(\sqrt{x^2-5x-6}\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
giải pt
a)\(\sqrt{\dfrac{2x-3}{x-1}}=2\)
b)\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
c)\(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
d)\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
e)\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
\(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\)
2. Tính:
a. 2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b. \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}\)
c. \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
b5: giải pt ;
a, \(\sqrt{49\left(1-2x+x^2\right)}-35=0\)
b, \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)