\(d=UCLN\left(12n+1,30n+1\right)\)
\(12n+1⋮d\Rightarrow60n+5⋮d\)
\(30n+1⋮d\Rightarrow60n+2⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+2\right)⋮d\)
\(\Rightarrow3⋮d\)
\(d\in\left\{1;3\right\}\)
Mà \(12n+1\)\(⋮̸\)\(3\)
\(\Rightarrow d=1\)
Vậy \(UCLN\left(12n+1,30n+1\right)=1\)
Gọi d = ƯCLN(12n + 1; 30n + 1)
⇒ (12n + 1) ⋮ d và (30n + 1) ⋮ d
*) (12n + 1) ⋮ d
⇒ 5.(12n + 1) ⋮ d
⇒ (60n + 5) ⋮ d (1)
*) (30n + 1) ⋮ d
⇒ 2.(30n + 1) ⋮ d
⇒ (60n + 2) ⋮ d (2)
Từ (1) và (2) suy ra:
(60n + 5 - 60n - 2) ⋮ d
⇒ 3 d
⇒ d = 1 hoặc d = 3
Mà 3 > 1
⇒ d = 3