Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tất cả các số tự nhiên a để a+15 và a-1 đều là số chính phương
a)Tìm tất cả các số tự nhiên a để a+15 và a-1 đều là số chính phương
b)Cho n số nguyên x1,x2,x3,.....,xn trong đó mõi số chỉ là 1 hoặc -1.Chứng minh nếu x1.x2+x2.x3+.....+xn-1.xn+xn.x1=0 thì n chia hết cho 4
Tìm tất cả các số tự nhiên n để A = n^2 + 4n + 11 là số chính phương.
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Tìm tất cả các số tự nhiên n sao cho các số n-50 và n + 50 đều là các số chính phương
Tìm tất cả các số tự nhiên n sao cho các số n-50 và n + 50 đều là các số chính phương
Tìm số tự nhiên a biết : a+15 và a-13 đều là số chính phương
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
1
a) Tìm tất cả các số tự nhiên n để 1+2+2^ +... + 2^2n-1 là số nguyên tố. b) Chứng minh rằng tồn tại 2023 số tự nhiên liên tiếp mà tất cả các số đều là hợp số. Nêu nhận định tổng quát và chứng minh nhận định đó. Câu 2.
a) Chứng tỏ rằng S=1+3+3^2 +...+3^2022 không là số chính phương.
b) Tìm số chính phương n mà tổng các chữ số của n bằng 2024.