Tính đạo hàm của hàm số: y = tan π / 2 – x với x ≠ k π , k ∈ Z
Cho hàm số y = cos 2 x .
a) Chứng minh rằng cos 2 x + k π = cos 2 x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos 2 x .
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π / 3 .
c) Tìm tập xác định của hàm số : z = 1 - cos 2 x 1 + cos 2 2 x
Tập xác định của hàm số y=cotx/cosx-1 A . R\{kpi/2 , k thuộc z} B . R\{pi/2+kpi,k thuộc z} C . R\{kpi,k thuộc z} D . R
Cho hàm số y = sin4x
a) Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z
Từ đó vẽ đồ thị của hàm số
y = sin4x; (C1)
y = sin4x + 1. (C2)
b) Xác định giá trị của m để phương trình: sin4x + 1 = m (1)
- Có nghiệm
- Vô nghiệm
c) Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x 0 = π / 24
1. tập xác định của hàm số \(y=\sqrt{sin8x+5}\)
A. D=R
B. D=R\\(\left\{-k2\pi,k\varepsilon Z\right\}\)
C. D=R\\(\left\{-\dfrac{\pi}{2}+k2\pi,k\varepsilon Z\right\}\)
D. D=R\\(\left\{-\pi+k2\pi,k\varepsilon Z\right\}\)
2. giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số \(y=\sqrt{sin3x}\)
A. M=1;m=-3
B. M=3;m=1
C. M=1;m=-1
D. M=1;m=0
\(\left\{-k2\pi,k\varepsilon Z\right\}\)\(\left\{-k2\pi,k\varepsilon Z\right\}\)
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó: y = c o t 2 x , y = cos ( x + π ) , y = 1 - sinx , y = tan 2016 x
A. 2
B. 1
C. 4
D. 3
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos ( x + π ) ; y=10 - sinx; y= 100 tan100x.
A. 1
B. 2
C.3
D. 4
Tập xác định của hàm số y = c o t ( 2 x - π / 3 ) + 2 là:
A. R\{π/6+kπ, k ∈ Z}.
B. R\{π/6+k2π, k ∈ Z}.
C. R\{5π/12+kπ/2, k ∈ Z}.
D. R\{π/6+kπ/2, k ∈ Z}.
Hàm số y = tan ( x / 2 - π / 4 ) có tập xác định là:
A. R\{π/2+k2π, k ∈ Z}.
B. R\{π/2+kπ, k ∈ Z}.
C. R\{3π/2+k2π, k ∈ Z}.
D. R.
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = cot 2x; y = cos(x + π); y = 1 – sin x; y = tan2016x
A. 1.
B. 2
C. 3
D. 4