PB

Cho hàm số y = sin4x

a) Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z

Từ đó vẽ đồ thị của hàm số

y = sin4x; (C1)

y = sin4x + 1. (C2)

b) Xác định giá trị của m để phương trình: sin4x + 1 = m (1)

- Có nghiệm

- Vô nghiệm

c) Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x 0   =   π / 24

CT
27 tháng 9 2019 lúc 16:29

a) Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.

Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.

Vì hàm số y = sin4x là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.

Các hàm số y = sin4x (C1) và y = sin4x + 1 (C2) có đồ thị như trên hình 1 và hình 2.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Vì sin4x + 1 = m ⇔ sin4x = m – 1

và -1 ≤ sin4x ≤ 1

nên -1 ≤ m – 1 ≤ 1

⇔ 0 ≤ m ≤ 2.

Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.

c) Phương trình tiếp tuyến của (C2) có dạng

y   -   y o   =   y ’ ( x o ) ( x   -   x o ) .

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết