Violympic toán 9

EH

Tìm min (max) của mỗi biểu thức sau :

a) A= x2+4x+7

b) B= x2- x+1

c) C= x2+x+1

d) D= x2+2\(\sqrt{x}\)+4

e) x+\(\sqrt{x}\)+1

g) G= x - \(\sqrt{x}\)+1

giúp mk vs ạ mk cần gấp <3

MP
3 tháng 9 2018 lúc 14:54

mk sữa lại nha , do đánh máy nhanh --> nhầm :((

a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)

\(\Rightarrow A_{min}=3\) khi \(x=-2\)

b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow B_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow C_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)

d) điều kiện xác định : \(x\ge0\)

ta có : \(D=x^2+2\sqrt{x}+4\ge4\)

\(\Rightarrow D_{min}=4\) khi \(x=0\)

e) điều kiện xác định : \(x\ge0\)

ta có : \(E=x+\sqrt{x}+1\ge1\)

\(\Rightarrow E_{min}=1\) khi \(x=0\)

g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow G_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

Bình luận (0)
MP
3 tháng 9 2018 lúc 14:44

a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)

\(\Rightarrow A_{max}=3\) khi \(x=-2\)

b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow B_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)

d) điều kiện xác định : \(x\ge0\)

ta có : \(D=x^2+2\sqrt{x}+4\ge4\)

\(\Rightarrow D_{max}=4\) khi \(x=0\)

e) điều kiện xác định : \(x\ge0\)

ta có : \(E=x+\sqrt{x}+1\ge1\)

\(\Rightarrow E_{max}=1\) khi \(x=0\)

g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow G_{max}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

Bình luận (4)

Các câu hỏi tương tự
LP
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết
NH
Xem chi tiết
VD
Xem chi tiết
LE
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết