NP

tìm GTNN và GTLN của hs y=\(\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)

LF
12 tháng 12 2016 lúc 17:25

\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|-\left|x+1\right|\)

+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)

+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)

+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)

\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)

Ta thấy:

Với \(x\ge1\) ta tìm được \(Min_y=-2\)Với \(x< -1\) ta tìm được \(Max_y=2\)

 

 

 

Bình luận (0)

Các câu hỏi tương tự
SM
Xem chi tiết
SM
Xem chi tiết
LT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
AD
Xem chi tiết
MH
Xem chi tiết
CN
Xem chi tiết
XT
Xem chi tiết