LT

a)tìm cặp x,y nguyên dương: \(15x^2-7y^2=9\)

b)cho \(-\frac{3}{2}\le x\le\frac{3}{2};x\ne0\)và \(\sqrt{3+2x}-\sqrt{3-2x}=a\) tính \(P=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}\) theo a

c)cho a,b,c là 3 sô dương thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) tìm GTLN của P=abc

(đề này của Q.Ngãi nha)

LF
14 tháng 2 2017 lúc 22:29

c)Từ gt suy ra:

\(\frac{1}{1+a}\geq\frac{c}{c+1}+\frac{b}{b+1}\)\( \geq2.\sqrt{\frac{bc}{(c+1)(b+1)}}\)

\(\frac{1}{1+b}\geq \frac{a}{a+1}+\frac{c}{c+1}\)\(\geq 2\sqrt{\frac{ac}{(a+1)(c+1)}}\)

\(\frac{1}{1+c}\geq\frac{a}{a+1}+\frac{b}{b+1}\)\(\geq 2\sqrt{\frac{ab}{(a+1)(b+1)}}\)

Từ 3 BĐT trên suy ra

\((1+a).(1+b).(c+1)\leq \frac{1}{8}.\frac{(a+1).(b+1).(c+1)}{a.b.c}\)\(\Rightarrow abc\leq\frac{1}{8}\)

Bình luận (1)
AH
14 tháng 2 2017 lúc 23:43

Câu a)

Từ giả thiết \(15x^2-7y^2=9\Rightarrow 3|y^2\Rightarrow 3|y\). Đặt \(y=3y_1(y_1\in\mathbb{Z}^+)\)

Phương trình trở thành:

\(15x^2-63y_1^2=9\Leftrightarrow 5x^2-21y_1^2=3\Rightarrow 3|x^2\Rightarrow 3|x\)

Đặt \(x=3x_1(x_1\in\mathbb{Z}^+)\)

\(\text{PT}\Leftrightarrow 45x_1^2-21y_1^2=3\Leftrightarrow 15x_1^2-7y_1^2=1\Rightarrow 3|7y_1^2+1\)

\(\Leftrightarrow 3| y_1^2+1\Leftrightarrow y_1^2\equiv 2\pmod 3\)

Điều này vô lý vì số chính phương chia \(3\) chỉ có thể dư \(0,1\)

Do đó PT vô nghiệm.

Bình luận (0)
HN
15 tháng 2 2017 lúc 8:46

Người làm câu a, người làm câu c. Tính bỏ câu b à. Vậy để t làm luôn cho nó hết.

b/ Ta đặt: \(\left\{\begin{matrix}\sqrt{3+2x}=u\\\sqrt{3-2x}=v\end{matrix}\right.\)từ đây ta có

\(\Rightarrow\left\{\begin{matrix}u-v=a\\u^2+v^2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u-v=a\\\left(u-v\right)^2+2uv=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u-v=a\\uv=\frac{6-a^2}{2}\left(1\right)\end{matrix}\right.\)

Ta lại có: \(\left\{\begin{matrix}u^2+v^2=6\\u^2-v^2=4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(u+v\right)^2-2uv=6\\\left(u+v\right)\left(u-v\right)=4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(u+v\right)=\sqrt{6+6-a^2}\\x=\frac{\left(u+v\right)\left(u-v\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u+v=\sqrt{12-a^2}\\x=\frac{a\sqrt{12-a^2}}{4}\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) thì ta có: \(\left\{\begin{matrix}uv=\frac{6-a^2}{2}\\x=\frac{a\sqrt{12-a^2}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{3+2x}.\sqrt{3-2x}=\frac{6-a^2}{2}\\x=\frac{a.\sqrt{12-a^2}}{4}\end{matrix}\right.\)

Theo đề thị:

\(P=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}=\frac{\sqrt{6+2\sqrt{\left(3+2x\right)\left(3-2x\right)}}}{x}\)

\(=\frac{\sqrt{6+2.\frac{6-a^2}{2}}}{\frac{a.\sqrt{12-a^2}}{4}}=\frac{4\sqrt{12-a^2}}{a\sqrt{12-a^2}}=\frac{4}{a}\)

Bình luận (0)
LT
14 tháng 2 2017 lúc 22:45

tại sao lại là \(\frac{1}{1+a}\ge\frac{c}{c+1}+\frac{b}{b+1}\) trong khi gt lại cho = 2 chứ ko \(\ge\)

Bình luận (4)

Các câu hỏi tương tự
QD
Xem chi tiết
NU
Xem chi tiết
XT
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
XT
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết
XT
Xem chi tiết