NQ

Tìm GTNN của P=2x2+y2-2xy-6x+2y+2024

H24
18 tháng 10 2019 lúc 22:16

 P=2x2+y2-2xy-6x+2y+2024

=>2P=4x2+2y2-4xy-12x+4y+4048

=(2x-y-3)2+y2-2y+1+4038

=(2x-y-3)2+(y-1)2+4038> hoặc = 4038

Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019

Vậy Pmin=2019<=>x=2;y=1

Bình luận (0)
 Khách vãng lai đã xóa
EC
18 tháng 10 2019 lúc 22:24

Ta có: 

P = 2x2 + y2 - 2xy - 6x + 2y + 2024

P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019

P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019

P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy MinP = 2019 <=> x = 2 và y = 1

Bình luận (0)
 Khách vãng lai đã xóa
HN
19 tháng 10 2019 lúc 5:57

\(P=2x^2+y^2-2xy-6x+2y+2024\)

\(\Rightarrow P=\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(x^2-4x+4\right)+2019\)

\(\Rightarrow P=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(x-2\right)^2+2019\)

\(\Rightarrow P=\left(x-y-1\right)^2+\left(x-2\right)^2+2019\)

Ta có:

\(\left(x-y-1\right)^2\ge0\forall x;y\inℝ\)

\(\left(x-2\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x;y\inℝ\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2+2019\ge2019\forall x;y\inℝ\)

\(\Rightarrow P\ge2019\forall x;y\inℝ\)

Dấu "=" xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=2\end{cases}}}\)

Vậy P nhỏ nhất khi P = 2019 tại x=2;y=1

Chúc bạn học tốt nhé!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
VT
Xem chi tiết
NB
Xem chi tiết
HP
Xem chi tiết
DK
Xem chi tiết
Xem chi tiết
PM
Xem chi tiết
AL
Xem chi tiết
H24
Xem chi tiết