Bài 1: Căn bậc hai

H24

tìm gtnn của M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)

TN
24 tháng 4 2019 lúc 21:58

ĐK: \(x\ge0\)

Ta có:

M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)

=\(\frac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}\)

= \(\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)

=\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\)

Áp dụng BĐT Cauchy cho hai số không âm ta có:

\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\frac{25}{\sqrt{x}+3}}=2.5=10\)

Hay \(M\ge10\)

Dấu '=' xảy ra \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\)

\(\Leftrightarrow\sqrt{x}+3=5\)(vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\))

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(TM\right)\)

Vậy,...

Học giỏi toán nhé! banhqua

Bình luận (8)
RT
24 tháng 4 2019 lúc 21:50

ĐK \(x\ge0\)

\(M=\frac{x+16\sqrt{x}+64-10\sqrt{x}-30}{\sqrt{x}+3}\)

\(M=\frac{\left(\sqrt{x}+8\right)^2-10\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(M=\frac{\left(\sqrt{x}+8\right)^2}{\sqrt{x}+3}-10\)

ta có điều kiện \(x\ge0\) vậy \(M_{min}\) khi x=0

\(M_{min}=\frac{\left(\sqrt{0}+8\right)^2}{\sqrt{0}+3}-10=\frac{64}{3}-10=\frac{34}{3}\)

vậy \(M_{min}=\frac{34}{3}\) khi x=0

Bình luận (1)

Các câu hỏi tương tự
HC
Xem chi tiết
TK
Xem chi tiết
LD
Xem chi tiết
LV
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
NA
Xem chi tiết
HB
Xem chi tiết
PM
Xem chi tiết