\(A=\frac{4}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(2+\frac{1}{2}\right)^2}{x+y}=5\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
\(A=\frac{4}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(2+\frac{1}{2}\right)^2}{x+y}=5\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)
Cho x,y là 2 số thực dương thỏa mãn \(x+y=\frac{5}{4}\). Gía trị nhỏ nhất của biểu thức \(P=\frac{4}{x}+\frac{1}{4y}\)
Cho x+y+z=k. Tìm GTNN của biểu thức \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho 2 số dương x,y thay đổi thỏa mãn điều kiện x+y≥4. Tìm GTNN của biểu thức:
A=\(\frac{3x^2+4}{4x}+\frac{2+y^2}{y^2}\)
Bài 1. Chứng minh bất đẳng thức sau
1,\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\),với a,b,c là 3 cạnh của tam giác, p là nửa chu vi.
2,\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\),với \(a\ge1,b\ge1\)
3,Tìm giá trị nhỏ nhất.
a,\(A=x+\frac{1}{x-1}\) ,với x > 1.
b, \(B=\frac{4}{x}+\frac{1}{4y}\),với x,y > 0 và \(x+y=\frac{5}{4}\)
4, \(C=a+b+\frac{1}{a}+\frac{1}{b}\)với a,b > 0 và \(a+b\le1\)
5,\(D=a^3+b^3+c^3\) với a,b,c > 0 và \(ab+bc+ca=3\)
Cho x, y>0. Tìm GTNN của
\(P=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y^3\right)}}\)
Giúp mình câu này với: Cho x,y,z>0 và x+y+z=1. Tìm GTNN(min) của \(P=\frac{9}{1-\left(xy+yz+zx\right)}+\frac{1}{4xyz}\)
1. Giải bft ( lập bảng xét dấu nếu cần )
\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
2. Chứng minh: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) ; với a,b,c > 0
3. Cho x,y,z > 0 thỏa mãn x+y+z = 1. Tìm GTLN của biểu thức: P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
1) Cho P = \(\frac{x}{1+x^2}\) + \(\frac{y}{1+y^2}\) + \(\frac{z}{1+z^2}\). Khẳng định nào đúng :
A. P >= 3/2 B. P >= 3 C. P<=1 D. P<=3/2 (Giải cụ thể ln nka)
2) Tìm GTNN của :
a) \(\frac{1}{x}\) + \(\frac{4}{y}\) với x + y = 5 (x, y ko âm)
b) \(x\sqrt{1-x^2}\)
3) Cho y = \(x^2+\left(2m+1\right)x+m^2-1\). Tìm m để biểu thức đạt GTNN = 1 trên khoảng [0;1]
4) Cho A(1;-2), B(2;3). Tìm tung độ điểm C để chu vi tam giác ABC nhỏ nhất
cho 2 số thực x, y dương thỏa mãn \(\frac{1}{x}\)+\(\frac{9}{y}\)= 1. GTNN của biểu thức P= x + y bằng