H3

Tìm GTNN của biểu thức sau: A=x2+y2-8x-y+68

LL
12 tháng 9 2021 lúc 21:29

\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)

\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NT
12 tháng 9 2021 lúc 21:31

\(A=x^2-8x+y^2-y+68\)

\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)

\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)

Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
MM
Xem chi tiết
H3
Xem chi tiết
TA
Xem chi tiết
VH
Xem chi tiết
TA
Xem chi tiết
LD
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết