Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x^2+\frac{1}{x})(1+8)\geq (x+\frac{2\sqrt{2}}{\sqrt{x}})^2\)
\(\Rightarrow \sqrt{x^2+\frac{1}{x}}\geq \frac{x+\frac{2\sqrt{2}}{\sqrt{x}}}{3}\)
Do đó: \(A\geq x+\frac{x+\frac{2\sqrt{2}}{\sqrt{x}}}{3}=\frac{4x}{3}+\frac{2}{3}\sqrt{\frac{2}{x}}\)
Áp dụng BĐT AM-GM:
\(\frac{4x}{3}+\frac{2}{3}\sqrt{\frac{2}{x}}=\frac{4x}{3}+\frac{1}{3}\sqrt{\frac{2}{x}}+\frac{1}{3}\sqrt{\frac{2}{x}}\geq 3\sqrt[3]{\frac{4}{3}.\frac{1}{9}.\frac{2}{x}}\)
\(\Leftrightarrow \frac{4x}{3}+\frac{2}{3}\sqrt{\frac{2}{x}}\geq 2\)
\(\Rightarrow A\geq 2\)
Vậy \(A_{\min}=2\). Dấu bằng xảy ra khi \(x=\frac{1}{2}\)