Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left\{{}\begin{matrix}\sqrt{2x+y}+2\sqrt{x-2y+1}=5\\3\sqrt{x-2y+1}+y=3x+2\end{matrix}\right.\)
Giải phương trình:
a) \(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\).
b) \(x^2-4x=\sqrt{x+2}\), với \(x\ge2\).
c) \(x^2-7x+2\left(x-2\right)\sqrt{x+1}+1=0\).
giai cac phuong trinh
a)\(2x^4+5x^3+x^2+5x+2=0\)
b)\(\sqrt{x-1}-\sqrt[3]{2-x}=1\)
c)\(x-\sqrt{x}+1=\sqrt{2x^2-30x+2}\)
d)\(2x^2+3x+7=\left(x-5\right)\sqrt{2x^2+1}\)
e)\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
a, giải pt 1, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
2, \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
b, giải hpt 1, \(\left\{{}\begin{matrix}x^2+4y^2-5=0\\4x^2y+8xy^2+5x+10y-1=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2-2x+2y-3=0\\16x^2-8xy^2+y^4-2y+4=0\end{matrix}\right.\)
Bài 8 Tìm tập xác định của hàm số
a , \(y=\frac{x+3}{2x-1}\)
b , \(y=\sqrt{3x+2}+\sqrt{4-x}\)
c , \(y=\frac{\sqrt{7-2x}}{\left(x+1\right)\sqrt{x^2-4x+3}}\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}4\left(2x\sqrt{2x-1}-y^3-3y^2\right)=15y+7+\sqrt{2x+1}\\\sqrt{\frac{y\left(y+2\right)}{2}}+\sqrt{6-x}=2x^2+2y^2-15x+4y+12\end{matrix}\right.\)
Tìm m để pt sau có nghiệm:\(\sqrt{\left(1+2x\right)\left(3-x\right)}=2x^2-5x+3+m\)
1. Chứng minh rằng: phương trình \(x^2-\left(m-1\right)x+2m-7=0\) luôn có 2 nghiệm phân biệt.
Tìm GTNN của \(T=\dfrac{1}{\left(x_1-1\right)^{2018}}+\dfrac{1}{\left(x_2-1\right)^{2018}}\) với \(x_1,x_2\) là 2 nghiệm của phương trình.
2. Giải phương trình \(\left(x+1\right)\sqrt{2x^2-1}=\left(x-1\right)\left(2x-1\right)\)
3. Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(x^2+\left(y-z\right)^2\right)=2\\y\left(y^2+\left(z-x\right)^2\right)=16\\z\left(z^2+\left(x-y\right)^2\right)=30\end{matrix}\right.\)
a) \(\sqrt{2x+3}\sqrt{x+1}=3x+2\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)
b) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)