Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 4: Phương trình tích

Z2

tìm giá trị nguyên của x để A ⋮B

A=10x2-7x-5 và B=2x-3

 

NT
30 tháng 1 2021 lúc 9:41

Để \(A⋮B\) thì \(10x^2-7x-5⋮2x-3\)

\(\Leftrightarrow10x^2-15x+8x-12+7⋮2x-3\)

\(\Leftrightarrow5x\left(2x-3\right)+4\left(2x-3\right)+7⋮2x-3\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+4\right)+7⋮2x-3\)

mà \(\left(2x-3\right)\left(5x+4\right)⋮2x-3\)

nên \(7⋮2x-3\)

\(\Leftrightarrow2x-3\inƯ\left(7\right)\)

\(\Leftrightarrow2x-3\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow2x\in\left\{4;2;10;-4\right\}\)

hay \(x\in\left\{2;1;5;-2\right\}\)(nhận)

Vậy: Khi \(x\in\left\{2;1;5;-2\right\}\) thì \(A⋮B\)

Bình luận (0)
MH
30 tháng 1 2021 lúc 9:47

Điều kiện: \(B\ne0\Leftrightarrow2x-3\ne0\Leftrightarrow x\ne\dfrac{3}{2}\).

Ta có: \(\dfrac{A}{B}=\dfrac{10x^2-7x-5}{2x-3}=\dfrac{10x^2-15x+8x-12+7}{2x-3}\\ =\dfrac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}=5x+4+\dfrac{7}{2x-3}\)

Để \(A⋮B\) thì \(\left(2x-3\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Nếu \(2x-3=1\Leftrightarrow2x=4\Leftrightarrow x=2\) (Thỏa mãn)

Nếu \(2x-3=-1\Leftrightarrow2x=2\Leftrightarrow x=1\) (Thỏa mãn)

Nếu \(2x-3=7\Leftrightarrow2x=10\Leftrightarrow x=5\) (Thỏa mãn)

Nếu \(2x-3=-7\Leftrightarrow2x=-4\Leftrightarrow x=-2\) (Thỏa mãn).

Vậy tập các giá trị \(x\) thỏa mãn là \(\left\{1;\pm2;5\right\}\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
TL
Xem chi tiết
NN
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
PM
Xem chi tiết
SK
Xem chi tiết