Lời giải:
Ta thấy \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0\)
\(\Rightarrow a+b\geq 2\sqrt{ab}\)
\(\Rightarrow 2(a+b)\geq a+b+2\sqrt{ab}\)
\(\Rightarrow 2(a+b)\geq (\sqrt{a}+\sqrt{b})^2\)
Hay \(C=(\sqrt{a}+\sqrt{b})^2\leq 2(a+b)\leq 2.1=2\)
Vậy \(C_{\max}=2\Leftrightarrow a=b=\frac{1}{2}\)
Ta có:
\(a+b\le1\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2-2\sqrt{ab}\le1\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le1+2\sqrt{ab}\)(1)
Mặt khác:
\(a+b\ge2\sqrt{ab}\)(co-si, dấu = xảy ra khi a=b)
\(\Rightarrow1\ge2\sqrt{ab}\)(2)
Từ (1) và (2)
=>\(\left(\sqrt{a}+\sqrt{b}\right)^2\le1+1\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\le2\Rightarrow C\le2\)
Vậy Min \(C=2\Leftrightarrow a=b=\dfrac{1}{2}\)