HN

tìm giá trị của phân thức P=\(\dfrac{5x-4y}{5x+4y}\) với 25x2+ 16y2=50xy và 4y<5x<0 

H9
27 tháng 7 2023 lúc 14:10

Ta có: 

\(P=\dfrac{5x-4y}{5x+4y}\)

\(\Leftrightarrow P^2=\left(\dfrac{5x-4y}{5x+4y}\right)^2\)

\(\Leftrightarrow P^2=\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)

\(\Leftrightarrow P^2=\dfrac{\left(5x\right)^2-2\cdot5x\cdot4y+\left(4y\right)^2}{\left(5x\right)^2+2\cdot5x\cdot4y+\left(4y\right)^2}\)

\(\Leftrightarrow P^2=\dfrac{\left(25x^2+16y^2\right)-40xy}{\left(25x^2+16y^2\right)+40xy}\)

Thay \(25x^2+16y^2=50xy\) vào ta có:

\(P^2=\dfrac{50xy-40xy}{50xy+40xy}=\dfrac{10xy}{90xy}=\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2\)

Mà: \(4y< 5x< 0\)

Nên: \(P=\dfrac{5x-4y}{5x+4y}< 0\)

Vậy: \(P=-\dfrac{1}{3}\)

Bình luận (0)
NT
27 tháng 7 2023 lúc 14:05

25x^2+16y^2=50xy

=>25x^2-50xy+16y^2=0

=>25x^2-10xy-40xy+16y^2=0

=>5x(5x-2y)-8y(5x-2y)=0

=>(5x-2y)(5x-8y)=0

=>5x=2y hoặc 5x=8y

5x>4y

=>5x=8y

=>x/8=y/5=k

=>x=8k; y=5k

\(P=\dfrac{5\cdot8k-4\cdot5k}{5\cdot8k+4\cdot5k}=\dfrac{40-20}{40+20}=\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NM
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
AT
Xem chi tiết
NB
Xem chi tiết
TP
Xem chi tiết
NK
Xem chi tiết