Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

BQ

Tìm giá trị của a để hệ phương trình sau có nghiệm duy nhất:

\(\left\{{}\begin{matrix}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{matrix}\right.\)

AH
15 tháng 11 2017 lúc 1:01

Lời giải:

Dễ thấy hệ có bộ nghiệm \((x,y)=(0;0)\)

Ta cần tìm $a$ sao cho hpt không còn nghiệm nào ngoài $(0;0)$

Trừ 2 PT cho nhau:

\(y^2-x^2=(x^3-y^3)-4(x^2-y^2)+a(x-y)\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)-4(x-y)(x+y)+a(x-y)+(x-y)(x+y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2-3x-3y+a)=0\)

Ta thấy TH \(x-y=0\) đã thỏa mãn bộ nghiệm \(x=y=0\), nên để hpt không có nghiệm nào khác \((0;0)\)

thì pt \(x^2+xy+y^2-3x-3y+a=0(*)\) phải vô nghiệm hoặc có chỉ có nghiệm \(x=y=0\)

+) \((*)\) vô nghiệm:

\(\Leftrightarrow \Delta< 0\)

\(\Leftrightarrow (y-3)^2-4(y^2-3y+a)< 0\)

\(\Leftrightarrow 4a> -3y^2+6y+9\) với mọi y

\(\Leftrightarrow 4a> \max(-3y^2+6y+9)\)

\(\Leftrightarrow 4a> \max [12-3(y-1)^2]\)\(\Leftrightarrow 4a>12\Leftrightarrow a>3\)

+) \((*)\) có nghiệm \(x=y=0\Rightarrow a=0\)

\((*)\) trở thành \(x^2+xy+y^2-3(x+y)=0\)

Thay \(x=0\) vào ta thấy pt còn nghiệm \(y=3\) (không thỏa mãn tính duy nhất) (loại)

Vậy \(a>3\) thỏa mãn. (1)

--------------------------------------------

Giờ ta quay lại TH $x=y$ để kiểm tra lại

Thay vào pt đầu tiên: \(x^2=x^3-4x^2+ax\Leftrightarrow x^3-5x^2+ax=0\)

\(\Leftrightarrow x(x^2-5x+a)=0\)

Để pt có nghiệm duy nhất \(x=0\) thì $x^2-5x+a=0$ vô nghiệm hoặc chỉ có nghiệm là $0$

TH chỉ có nghiệm là $0$ kéo theo \(a=0\Rightarrow x^2-5x=0\) còn có nghiệm $x=5$ (vô lý)

TH vô nghiệm \(\Rightarrow \Delta=25-4a <0\Leftrightarrow a> \frac{25}{4}\) (2)

Từ (1),(2) suy ra \(a>\frac{25}{4}\)

Bình luận (0)

Các câu hỏi tương tự
ES
Xem chi tiết
LB
Xem chi tiết
PA
Xem chi tiết
NQ
Xem chi tiết
LB
Xem chi tiết
LB
Xem chi tiết
OW
Xem chi tiết
OW
Xem chi tiết
SK
Xem chi tiết