a. ĐKXĐ:\(\left\{{}\begin{matrix}\sqrt{x-3}\ne0\\x-3\ge0\end{matrix}\right.\)⇌\(\left\{{}\begin{matrix}x\ne3\\x\ge3\end{matrix}\right.\)⇒ x > 3
b.ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)⇌\(\left\{{}\begin{matrix}x\ge2\\x\ne2\end{matrix}\right.\)⇒x > 2
a) Đk: \(\left\{{}\begin{matrix}x-3\ge0\\x-3\ne0\end{matrix}\right.\Leftrightarrow x-3>0\Leftrightarrow x>3\)
b) \(x-2>0\Leftrightarrow x>2\)
A=\(\dfrac{1}{\sqrt{x-3}}\)
Để A xác định thì x - 3 > 0
\(\Leftrightarrow\) x > 3