Cho hàm số \(y=\frac{2x}{x-1}\) có đồ thị (C). Tìm 2 điểm A, B thuộc đồ thị sao cho tiếp tuyến của đồ thị (C) tại các điểm đó song song với nhau đồng thời 3 điểm O, A, B tạo thành tam giác vuông tại O (O là gốc tọa độ)
Cho hàm số \(y=-x^3+3x+2\). Tìm những điểm trên trục hoành sao cho từ đó kẻ được 3 tiếp tuyến đến đồ thị hàm số và trong đó có 2 tiếp tuyến vuông góc với nhau.
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị (C). Gọi I là giao điểm hai đường tiệm cận của (C). Tìm trên (C) điểm M sao cho tiếp tuyến của (C) tại đó vuông góc với đường thẳng IM
Tìm tất cả những điểm nằm trên trục tung sao cho từ đó có thể kẻ tới đồ thị hàm số \(y=x^4-2x^2-1\) đúng 3 tiếp tuyến
Cho hàm số : \(y=x^3-2x^2+\left(m-1\right)x+2m\left(C_m\right)\)
a. Tìm m để tiếp tuyến của đồ thị \(\left(C_m\right)\) tại điểm có hoành độ x = 1 song song với đường thẳng \(y=3x+10\)
b. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị \(\left(C_m\right)\) vuông góc với đường thẳng \(\Delta:y=2x+1\)
Cho hàm số \(y=x^3+\left(m-1\right)x^2+m\left(m-3\right)x\left(1\right)\) với m là tham số
a) Tìm m để đồ thị hàm số (1) có cực đại và cực tiểu nằm hai phía đối với trục tung
b) Khi m = 1 hàm số (1) có đồ thị là (C). Tìm tọa độ các điểm M (khác gốc tọa độ O) trên (C) sao cho tiếp tuyến \(\Delta\) của (C) tại M vuông góc với đường thẳng OM
Cho hàm số \(y=x^3-3x^2+4\left(C\right)\). Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của đồ thị tại điểm đó song song với đường thẳng \(y=9x+3\)
Viết phương trình tiếp tuyến của đồ thị hàm số (C) : \(y=x^3-6x^2+9x-2\)
a) Tại điểm M(1;2)
b) Tại giao điểm của đồ thị (C) với trục Oy
c) Tại điểm có hoành độ bằng -1
d) Tại điểm có tung độ bằng -2
e) Tại điểm N biết điểm N cùng 2 điểm cực trị của (C) tạo thành tam giác có diện tích bằng 6
Tìm tọa độ điểm M trên đồ thị (C) của hàm số \(y=x^3-3x+2\) sao cho tiếp tuyến với (C) tại M cắt (C) tại N sao cho \(MN=2\sqrt{6}\)