Bài 5b: Tiếp tuyến của đồ thị hàm số

LD

Cho hàm số \(y=x^3-3x^2+4\left(C\right)\). Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của đồ thị tại điểm đó song song với đường thẳng \(y=9x+3\)

NA
8 tháng 4 2016 lúc 16:06

Ta có \(y'=3x^2-6x\)

Gọi \(M\left(x_0;x_0^3-3x^3_0+4\right)\) là điểm thuộc đồ thị (C)

Hệ số góc tiếp tuyến của đồ thị (C) tại M là \(k=y'\left(x_0\right)=3x_0^2-6x_0\)

Vì tiếp tuyến của đồ thị tại M song song với đường thẳng \(d:y=9x+3\) nên có hệ số góc \(k=9\)

\(\Leftrightarrow3x_0^2-6x_0=9\Leftrightarrow x_0^2-2x_0-3=0\Leftrightarrow x_0=-1\) V \(x_0=3\)

Vậy \(M\left(-1;0\right)\) và \(M\left(3;4\right)\) đều không thuộc d nên thỏa mãn yêu cầu bài toán

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
PD
Xem chi tiết
VT
Xem chi tiết
PB
Xem chi tiết