Bài 5b: Tiếp tuyến của đồ thị hàm số

NH

Cho hàm số \(y=\frac{2x}{x-1}\) có đồ thị (C). Tìm 2 điểm A, B thuộc đồ thị sao cho tiếp tuyến của đồ thị (C) tại các điểm đó song song với nhau đồng thời 3 điểm O, A, B tạo thành tam giác vuông tại O (O là gốc tọa độ)

 

DT
28 tháng 4 2016 lúc 11:20

Gọi \(A\left(a;\frac{2a}{a-1}\right);B\left(b;\frac{2b}{b-1}\right);\left(a,b\ne0;a,b\ne1;a\ne b\right)\) thuộc đồ thị (C)

Khi đó hệ số góc của các đường tiếp tuyếb rại A; B lần lượt là :

\(k_1=-\frac{2}{\left(a-1\right)^2};k_2=-\frac{2}{\left(b-1\right)^2};\)

Do các đường tiếp tuyến song song nên :

\(-\frac{2}{\left(a-1\right)^2}=-\frac{2}{\left(b-1\right)^2};\)

\(\Leftrightarrow a+b=2\)

Mặt khác, ta có : \(\overrightarrow{OA}=\left(a;\frac{2a}{a-1}\right);\overrightarrow{OB}=\left(b;\frac{2b}{b-1}\right)\)

Do OAB là tam giác vuông tại O nên \(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow ab+\frac{4ab}{\left(a-1\right)\left(b-1\right)}=0\)

Ta có hệ : \(\begin{cases}a+b=2\\ab+\frac{4ab}{\left(a-1\right)\left(b-1\right)}=0\end{cases}\)

Giải hệ ta được : \(\begin{cases}a=-1\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=-1\end{cases}\)

Vậy 2 điểm cần tìm có tọa độ là : (-1;1) và (3;3)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LD
Xem chi tiết
PA
Xem chi tiết
MD
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
LK
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết