ND

Tìm các cặp số nguyên x,y thỏa man: 2xy2+2x+3y2=4

NT
3 tháng 9 2023 lúc 23:33

\(2xy^2+2x+3y^2=4\left(x;y\inℤ\right)\)

\(\Leftrightarrow2x\left(y^2+1\right)+3y^2+3-3=4\)

\(\Leftrightarrow2x\left(y^2+1\right)+3\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right)\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right);\left(y^2+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)

\(TH1:\left\{{}\begin{matrix}2x+3=-1\\y^2+1=-7\left(loại\right)\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}2x+3=1\\y^2+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\pm\sqrt[]{6}\left(loại\right)\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}2x+3=-7\\y^2+1=-1\left(loại\right)\end{matrix}\right.\)

\(TH1:\left\{{}\begin{matrix}2x+3=7\\y^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\) thỏa điều kiện đề bài

Bình luận (0)
KL
3 tháng 9 2023 lúc 23:37

2xy² + 2x + 3y² = 4

2xy² + 2x + 3y² + 3 = 4 + 3

(2xy² + 2x) + (3y² + 3) = 7

2x(y² + 1) + 3(y² + 1) = 7

(y² + 1)(2x + 3) = 7

TH1: 2x + 3 = 1 và y² + 1 = 7

*) 2x + 3 = 1

2x = -2

x = -1 (nhận)

*) y² + 1 = 7

y² = 6

y = ±√6 (loại)

TH2: 2x + 3 = -1 và y² + 1 = -7

*) 2x + 3 = -1

2x = -4

x = -2 (nhận)

*) y² + 1 = -7

y² = -8 (vô lý)

TH3: 2x + 3 = 7 và y² + 1 = 1

*) 2x + 3 = 7

2x = 4

x = 2 (nhận)

*) y² + 1 = 1

y² = 0

y = 0 (nhận)

TH4: 2x + 3 = -7 và y² + 1 = -1

*) 2x + 3 = -7

2x = -10

x = -5 (nhận)

*) y² + 1 = -1

y² = -2 (vô lý)

Vậy ta được cặp giá trị (x; y) thỏa mãn: (2; 0)

Bình luận (0)
DB
4 tháng 9 2023 lúc 8:56

x = 2

y = 0

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
PT
Xem chi tiết
2P
Xem chi tiết
KG
Xem chi tiết
KG
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
VA
Xem chi tiết
HP
Xem chi tiết