H24

Thực hiện phép tính:
a) \(\dfrac{x^3+2x}{x^3+1}\) + \(\dfrac{2x}{x^2-x+1}\) + \(\dfrac{1}{x+1}\)

b) \(\dfrac{3\left(x+1\right)^2}{x^3-1}\) - \(\dfrac{1-x}{x^2+x+1}\) + \(\dfrac{3}{1-x}\)

Giúp e với ạ

NT
22 tháng 11 2024 lúc 10:06

a) \(...=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3+3x^2+3x+x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-x+1}\)

\(=\dfrac{x^2+2x+1}{x^2-x+1}=1+\dfrac{3x}{x^2-x+1}\)

b) \(...=\dfrac{3\left(x^2+2x+1\right)+\left(x-1\right)^2-3\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x^2+6x+3+x^2-2x+1-3x^2-3x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

Bình luận (0)
H24
24 tháng 11 2024 lúc 16:08

a)\(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}=\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)

\(=\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x\cdot\left(x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}+\dfrac{1.\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x^3+3x^2+3x+1}{x^3+1}\\ =\dfrac{\left(x+1\right)^3}{x^3+1}\)

 

b)\(\dfrac{3\left(x+1\right)^2}{x^3-1}-\dfrac{1-x}{x^2+x+1}+\dfrac{3}{1-x}\\ =\dfrac{3\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{3x^2+6x+3+x^2-2x+1-3x^2+3x+3}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{x^2+x+12}{x^3-1}\)

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
TL
Xem chi tiết
GV
Xem chi tiết
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
TL
Xem chi tiết
CT
Xem chi tiết
CD
Xem chi tiết